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Abstract
A theory of additive Markov chains with a long-range memory, proposed
earlier in Usatenko et al (2003 Phys. Rev. E 68 061107), is developed and
used to describe statistical properties of long-range correlated systems. The
convenient characteristics of such systems, memory functions and their relation
to the correlation properties of the systems are examined. Various methods
for finding the memory function via the correlation function are proposed.
The inverse problem (calculation of the correlation function by means of the
prescribed memory function) is also solved. This is demonstrated for the
analytically solvable model of the system with a step-wise memory function.

PACS numbers: 05.40.−a, 02.50.Ga, 87.10.+e

1. Introduction

The problem of long-range correlated dynamic systems (LRCS) has been under study for a long
time in many areas of contemporary physics [1–6], biology [7–12], economics [8, 13, 14],
linguistics [15–19], etc [8, 20]. One of the ways to get a correct insight into the nature
of correlations in a system consists in constructing a mathematical object (for example, a
correlated sequence of symbols) so that some of its statistical properties coincide with those of
the initial system. This problem is closely related to the realization problem (see, for instance,
[21–23]). There exist many algorithms for generating long-range correlated sequences: the
inverse Fourier transformation [20, 24], the expansion-modification Li method [25], the Voss
procedure of consequent random additions [26], the correlated Levy walks [27], etc [20].
The use of multi-step Markov chains is an essential point among them because they offer a
possibility of constructing a random sequence having necessary correlated properties in the
most natural way. This was demonstrated in [28], where the concept of a Markov chain with

0305-4470/06/4614289+13$30.00 © 2006 IOP Publishing Ltd Printed in the UK 14289

http://dx.doi.org/10.1088/0305-4470/39/46/004
mailto:yam@ire.kharkov.ua
http://stacks.iop.org/JPhysA/39/14289


14290 S S Melnyk et al

the step-wise memory function was introduced. The correlation properties of some dynamical
systems (coarse-grained sequences of Eukarya’s DNA and dictionaries) can be well described
by this model [28].

A sequence of symbols in the Markov chain can be thought of as the sequence of hops of a
certain particle so that the binary sequence corresponds to the hops of length 1 in two opposite
directions at every fixed time interval. The Brownian motion of this particle is correlated. The
sum of L sequential symbols in the Markov chain is the displacement of the particle during
the ‘time’ interval L. This point makes it possible to employ statistical methods for examining
the correlation properties of complex dynamic systems using mapping onto the binary Markov
chains. Another important reason for exploring Markov chains is their application to various
physical objects [29–31], e.g., to the Ising chains of spins. The problem of a thermodynamics
description of the Ising chains with long-range spin interaction is still unresolved even for
the 1D case. The association of such systems with the Markov chains can shed light on the
non-extensive thermodynamics of the LRCS.

In this paper, we ascertain the relation between the memory function of the additive
Markov chains and the correlation properties of the systems under consideration. We examine
the simplest variant of the random sequences, dichotomic (binary) ones, although the proposed
theory can be applied to arbitrary additive Markov processes with a finite or infinite number
of states.

The paper is organized as follows. In the first section, we introduce general relations for
the Markov chains, derive an equation connecting the correlation and memory functions of
additive Markov chains and verify the robustness of our method by numerical simulations.
The second part is devoted to the study of the correlation function for the Markov chain with
the step-wise memory function. In subsection 3.2, we reveal a band structure of the correlation
function and obtain its explicit expression. Subsection 3.3 contains the results of an asymptotic
study of the correlation function.

2. General properties of additive Markov chains

2.1. Basic notions

Let us consider a homogeneous binary sequence of symbols, ai = {0, 1}, i ∈ Z = . . . ,

−2,−1, 0, 1, 2, . . . To determine the N-step Markov chain, we have to introduce the
conditional probability P(ai |ai−N, ai−N+1, . . . , ai−1) of the definite symbol ai (for example,
ai = 1 or ai = 0 ) occurring after the N-word TN,i , where TN,i denotes the sequence of
symbols ai−N, ai−N+1, . . . , ai−1. Thus, it is necessary to define 2N values of the P-function
corresponding to each possible configuration of the symbols in the N-word TN,i . Since we
intend to deal with sequences possessing the memory length of the order of 106, we need to
make some simplifications. Suppose that the P-function has the additive form

P(ai = 1|TN,i) =
N∑

k=1

f (ai−k, k). (1)

Here, the value f (ai−k, k) is the additive contribution of the symbol ai−k to the conditional
probability of the symbol unity occurring at the ith site. Equation (1) corresponds to the
additive influence of the previous symbols on the generated one. Such a Markov chain
is referred to as an additive Markov chain [32]. The homogeneity of the Markov chain is
provided by the independence of the conditional probability equation (1) of index i. It is
possible to consider equation (1) as the first term in the expansion of conditional probability in
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the formal series of terms that correspond to the additive (or unary), binary, ternary and such
functions up to an N-ary one.

Let us rewrite equation (1) in an equivalent form

P(ai = 1|TN,i) = ā +
N∑

r=1

F(r)(ai−r − ā). (2)

Here,

ā =
N∑

r=1

f (0, r)

/[
1 −

N∑
r=1

(f (1, r) − f (0, r))

]

is the average number of unities in the sequence, [32], and

F(r) = f (1, r) − f (0, r).

We refer to F(r) as the memory function (MF). It describes the strength of impact of the
previous symbol ai−r upon a generated one, ai . Evidently, this function has to satisfy condition
0 � P(ai = 1|TN,i) � 1. To the best of our knowledge, the concept of the memory function
for multi-step Markov chains was introduced in [19, 28]. The authors indicate that it is
convenient to use it in describing the correlated properties of complex dynamical systems with
long-range correlations.

The function P(ai = 1|TN,i) contains complete information about the correlation
properties of the Markov chain. In general, the correlation function and other moments
are employed as input characteristics to describe the correlated random systems. Yet the
correlation function takes an account of both the direct interconnection of the elements ai and
ai+r and their indirect interaction via other elements. Our approach operates with the ‘origin’
characteristics of the system, specifically with the memory function.

The positive values of the MF result in persistent diffusion where previous displacements
of the Brownian particle in some direction provoke its consequent displacement in the same
direction. The negative values of the MF correspond to the antipersistent diffusion where
the changes in the direction of motion are more probable. In terms of the Ising long-range
particles interaction model, which could be naturally associated with the Markov chains,
the positive values of the MF correspond to the attraction of particles whereas the negative
ones conform to the repulsion.

We consider the distribution WL(k) of the words of a definite length L by the number k of
unities in them, ki(L) = ∑L

l=1 ai+l , and the variance D(L) of ki(L),

D(L) = (k − k̄)2, (3)

where the definition of the average value of g(k) is g(k) = ∑L
k=0 g(k)WL(k).

Another statistical characteristic of random sequences is the correlation function

K(r) = aiai+r − ā2. (4)

By definition, the correlation function is even, K(−r) = K(r), and K(0) = ā(1 − ā) is the
variance of random variable ai . The correlation function is related to the above-mentioned
variance by the equation

K(r) = 1
2 (D(r − 1) − 2D(r) + D(r + 1)), (5)

or

K(r) = 1

2

d2D(r)

dr2
(6)

in the continuous limit.
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2.2. Derivation of the main equation

In this subsection, we obtain a very important relation connecting the memory and correlation
functions of the additive Markov chain. Note that this relation has been already derived by
the variation method in [32]. Here, we offer a more rigorous proof of this equation that also
allows one to have a better understanding of the nature of this relation.

Let us introduce the function φ(r) = P(ai = 1|ai−r = 1), which is the probability of
symbol ai = 1 occurring under condition that the previous symbol ai−r is likewise equal to
unity. This function is obviously connected to the correlation function K(r), see equation (4),
since the quantity aiai−r is the probability of simultaneous equality to unity of both symbols,
ai and ai−r . It can be expressed in terms of the conditional probability φ(r),

aiai−r = P(ai = 1|ai−r = 1)P (ai−r = 1) = āφ(r). (7)

Substituting equation (7) into equation (4), we get

K(r) = āφ(r) − ā2. (8)

For the N-step Markov chain, the probability of the symbol ai = 1 occurring depends on
the previous N-word only. Therefore, to obtain the value of φ(r) one needs to average the
conditional probability P equation (2) over all realizations of the N-words at ai−r = 1,

φ(r) = P(ai = 1|ai−r = 1)

=
∑
TN,i

P (ai = 1|TN,i, ai−r = 1)P (TN,i |ai−r = 1). (9)

If the value of r is less than or equal to N, then ai−r in equation (9) is one of the symbols
ai−1, ai−2, . . . , ai−N in the word TN,i . In this case, the summands in equation (9), with the
word TN,i that contains the symbol zero at the (i − r) th position, are equal to zero. If r > N ,
the memory function F(r) equals zero in this region and, hence, the sum in equation (9)
contains all terms corresponding to all different N-words.

Substituting equation (2) into equation (9), we have

φ(r) = ā
∑
TN,i

P (TN,i |ai−r = 1) +
N∑

r ′=1

F(r ′)
∑
TN,i

(ai−r ′ − ā)P (TN,i |ai−r = 1). (10)

According to the normalization condition, the first sum in equation (10) is equal to unity.
Consider the sum∑

TN,i

ai−r ′P(TN,i |ai−r = 1) (11)

in the second term on the rhs of equation (10). The symbol ai−r ′ is contained within the word
TN,i . Therefore, equation (11) represents the average value of ai−r ′ when ai−r = 1. In other
words, it equals the probability φ(r − r ′) of ai−r ′ = 1 occurring provided ai−r = 1:∑

TN,i

ai−r ′P(TN,i |ai−r = 1) = φ(r − r ′). (12)

Substituting this equation into equation (10), we obtain

φ(r) = ā +
N∑

r ′=1

F(r ′)(φ(r − r ′) − ā). (13)

Taking into account equation (8), we arrive at the relation between the memory function and
the correlation function:

K(r) =
N∑

r ′=1

F(r ′)K(r − r ′), r � 1. (14)
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Figure 1. Calculated correlation function K(r) of the Markov chain constructed with the model
memory function F(r), equation (16), shown by the solid line in the inset. The dots in the inset
correspond to the memory function reconstructed by solving equation (14) with the correlation
function K(r) presented in the main panel.

This result can be understood intuitively. The memory function values F(r) characterize
a direct influence of symbols on the distance r. In contrast, the correlation function values
K(r) attest to the implicit influence as well. The convolution is just a reflection of this: every
summand in equation (14) is the ‘influence’ of symbols on the shorter distance (r − r ′) with
‘intensity’ F(r ′).

Another equation resulting from equation (14) by double summation over index r
establishes a relationship between the memory function F(r) and variance D(L),

M(r, 0) =
N∑

r ′=1

F(r ′)M(r, r ′),

M(r, r ′) = D(r − r ′) − (D(−r ′) + r[D(−r ′ + 1) − D(−r ′)]).

(15)

Equation (5) and parity of the function D(r) are used in equation (15).
The latter equation shows that it is convenient to use the variance D(L) instead of the

correlation function K(r). The function K(r), being a second derivative of D(r) in continuous
approximation, is less robust in computer simulations. It is a strong reason for why we prefer
to use equation (15) for long-range memory sequences. This is our tool for finding the memory
function F(r) of a sequence using the variance D(L).

2.3. Numerical reconstruction of the memory function

Let us verify the robustness of our method by numerical simulations. We consider a model
memory function

F(r) = 0.1

{
1 − r/10 1 � r < 10,

0 r � 10,
(16)

shown in the inset in figure 1 by a solid line. Using equation (2), we construct a random
unbiased ā = 1/2, Markov chain. Then we numerically calculate the correlation function
K(r) by solving the set of N linear equations (14) with the aim of the constructed binary
sequence of the length 3 × 106. The result of these calculations is given in figure 1. One
can see that the correlation function K(r) roughly mimics the memory function F(r) over
the region 1 � r � 10. In the region r > 10, the memory function is equal to zero but the
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correlation function does not vanish3. Then, using the obtained correlation function K(r), we
solve equation (14) numerically. The result is shown in the inset in figure 1 by dots. We have
an excellent agreement between initial, equation (16), and reconstructed memory functions
F(r).

The binary correlation function does not permit one to generate the random sequence of
symbols. The obtained relation (14) between the correlation and memory functions allows us
to find the memory function as the solution of equation (14) and, thus, to construct a binary
sequence with a prescribed correlation function. This is the nontrivial result obtained in this
paper.

Yet another approach to numerical reconstruction by finding the memory function is an
iteration procedure. For its realization, let us rewrite equation (14) in the form

F(r) = K(r)

K(0)
−

N∑
r ′=1,r ′ �=r

K(r − r ′)
K(0)

F (r ′). (17)

Using equation (17) with starting iteration F0(r) = 0, we obtain

Fn+1(r) = K(r)

K(0)
−

N∑
r ′=1,r ′ �=r

K(r − r ′)
K(0)

Fn(r
′), n � 0. (18)

Thus, the memory function can be presented as the series

F(r) = K(r)

K(0)
−

∑
r ′ �=r

K(r − r ′)K(r ′)
K2(0)

+
∑
r ′ �=r

∑
r ′′ �=r ′

K(r − r ′)K(r ′ − r ′′)K(r ′′)
K3(0)

+ · · · (19)

Note that the Markov chain with the definite correlation function K(r) exists if the series (19)
is convergent and the obtained function implies the probability (2) satisfying the requirement
0 � P (ai = 1|TN,i) � 1 for the arbitrary word TN,i . If ā = 1/2, we obtain the
restriction

∑ |F(r)| � 1. A sufficient, but not necessary, requirement is
∑N−1

r=1 |K(r)| �
1/12 − |K(N)|/3.

3. Correlation function of the chain with the step-wise memory function

In the previous section, we have derived the relationship (14) between two characteristics
of the Markov chain, the memory and correlation functions, and used this equation to solve
the problem of finding the memory function via the known correlation function. Here, we
present the procedure of solving the inverse problem. We assume the memory function to be
known and find the correlation function of the correspondent additive Markov chain. Formally,
equation (14) makes it possible to obtain K(r) for arbitrary F(r). However, as will be seen in
the following sections, a sufficiently wide range of analytic results can be found precisely for
the chain with the step-wise memory function

F(r) =
{
α r � N,

0 r > N.
(20)

The restriction imposed on parameter α can be deduced from equation (2): |α| < 1/N .
Note that each of the unities in the preceding N-word promotes the emergence of new unity
if 0 < α < 1/N . This corresponds to the persistent diffusion. The region of parameter
α determined by inequality −1/N < α < 0 corresponds to the antipersistent diffusion. If
α = 0, one has the case of the non-correlated Brownian motion.

3 The existence of the ‘additional tail’ in the correlation function is in agreement with [19] and corresponds to the
well-known fact that the correlation length is always larger than the region of memory function action.
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3.1. Main equation for the correlation function

Substituting equation (20) into equation (14), we arrive at the relation

K(r) = α

N∑
r ′=1

K(r − r ′), r � 1. (21)

Here, the correlation function is assumed to be even, K(−r) = K(r). Equation (21) is the
linear recurrence of the order of N for r � N + 1, so we stand in need of N initial conditions.
For the unbiased sequence, ā = 1/2, we have K(0) = 1/4. The solution of equation (21)
written for r = 1, . . . , N yields the constant value of the correlation function, K(r) = K0, at
r = 1, . . . , N − 1:

K0 = α

4(1 − α(N − 1))
. (22)

Subtracting equation (21) from the same equation written for r + 1, we derive another,
more convenient, form of the recurrence:

K(r + 1) − (1 + α)K(r) + αK(r − N) = 0. (23)

This equation is of the order of N + 1, thus if is necessary to have an additional initial
condition. It can be derived from equation (21): K(N) = K0. Note that the possibility of
rewriting equation (21) in the form of equation (23) is the result of the simple structure of the
memory function. We solve the obtained recurrent equations by the most natural method, by
means of step-by-step finding the sequent values of the correlation function. Such an approach
is very suitable for the analysis of the correlation function at r � N .

3.2. Correlation function at r � N

3.2.1. Band structure of the correlation function. Equation (21) allows one to find
numerically the unknown correlation function K(r). The result of this step-by-step calculation
is presented in figure 2 by a solid line. One can easily see the discontinuity of K(r) at the
point L = N = 100; the breakpoint of the curve is observed at L = 2N . Such a behaviour
of the correlation function results from using the step-wise memory function. To clarify this
fact, it is convenient to change the variable r by the band number s and the intra-band number
ρ:

K(r) = Ks(ρ), r = sN + ρ + 1, ρ = 0, 1, . . . , N − 1, s = 0, 1, . . . (24)

Within the sth band, equation (23) is the second-order recurrence with the term αKs−1(ρ)

that is determined at the previous step, while finding the correlation function for the (s − 1)th
band.

3.2.2. General expression for the correlation function. In the zeroth band (s = 0, 1 � r �
N), as was shown above, the correlation function is constant:

K0(ρ) = K0. (25)

For the first band (s = 1, N + 1 � r � 2N), considering that K(r − N − 1) = K0(ρ), we
have

K1(ρ) = (1 − (1 − αN)(1 + α)ρ)K0. (26)
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Figure 2. Correlation function K(r) (solid line) obtained by two different methods: the numerical
simulation of equation (14) and exact solution equation (41). The dotted line is for the contribution
to K(r) of the first root of equation (32). The dashed line refers to the correlation function obtained
in [19]. The vertical lines indicate the limits of the bands numbered by s.

The correlation function decreases quasi-continuously within the first band4. However, as
was mentioned above, there exists a discontinuity in the K(r) dependence at r = N . This
discontinuity disappears in the limiting case of the strong persistence, α → 1/N .

Substituting equation (26) into equation (23), we find the solution K2(ρ) for the second
band (s = 2, 2N + 1 � r � 3N):

K2(ρ) = (1 − (1 − αN)((1 + α)ρ+N − ρα(1 + α)ρ−1)K0. (27)

The correlation function K(r) is continuous at the interface between the first and second bands,
K1(N) = K2(0). However, its first derivative of K(r) is discontinuous here (see figure 2).
Using the induction method, one can easily derive the formula for Ks(ρ) in the sth band
(sN + 1 � r � (s + 1)N):

Ks(ρ) =
(

1 − (1 − αN)

s∑
i=1

(−α)i−1(1 + α)(s−i)N+ρ−i+1Ci−1
(s−i)N+ρ

)
K0,

Ck
n = �(n + 1)

�(k + 1)�(n − k + 1)
.

(28)

It follows from equation (28) that the first (s − 2) derivatives of the correlation function
K(r) are continuous at the border between the (s − 1)th and sth bands, but the derivative of
the (s − 1)th order changes discontinuously. With αN � 1, equation (28) takes a simpler
form

Ks(ρ) = K0α
sCs

s+N−1−ρ. (29)

It is seen that the correlation function decreases proportionally to αs with an increase of the
band number s.

It is not easy to analyse the asymptotical behaviour of the function K(r) at large s because
the number of summands in equation (28) increases proportional to s. This is a good reason to
propose another approach to the asymptotical study of the correlation function K(r) at s � 1.

4 Denote A = αN and suppose that value A is constant while N → ∞. Let g(x) = limN→∞ K(xN). If the
function g(x) is a continuous function, we refer to K(r) as a quasi-continuous function. If function g(x) has a point
of discontinuity at x0, we refer to r = x0N as a point of discontinuity of function K(r). In our case, g(x) = K0, at
0 < x < 1, and g(x) = K0(1 − (1 − A) exp((x − 1)A)), at 1 < x < 2.
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Figure 3. The dots are the roots of the characteristic equation (32) for N = 100 and α = 0.008.
The solid line is the circle |ξ | = 1.

3.3. Asymptotical study of the correlation function

3.3.1. Derivation of the characteristic equation. The general solution of linear recursion
equation (21) can be represented as the linear combination of N different exponential functions,

K(r) =
N∑

i=1

aiξ
r
i . (30)

To find the values of ξi , we substitute the fundamental solution,

K(r) = ξ r , (31)

into equation (21) and obtain the characteristic polynomial equation of the order of N. Constant
multipliers ai should be determined by initial conditions.

It is more convenient to use equation (23) instead of equation (21), that leads to the
characteristic equation of the order of N + 1:

ξN+1 − (1 + α)ξN + α = 0. (32)

The extra root of this equation, ξ = 1, appears as a consequence of passing on to the equation
of order of N +1 from that of the order of N. The corresponding coefficient, ai , in equation (30)
is equal to zero because the correlation function should decrease at r → ∞.

Our study shows that equation (32) has one real positive root less than unity in the case
of odd N. In the case of even N, there are two real roots, one positive and one negative. The
rest of the roots are complex. All absolute values of roots are less than unity, which is in
agreement with the finiteness of the memory function F(r). In the case of large N, the absolute
magnitudes of all roots are close to unity for nearly all values of α satisfying the inequality,

1

N
ln

1

α
� 1. (33)

The distribution of the roots in the complex plane ξ is shown in figure 3.
In the simplest case, N = 2, equation (32) has two real roots:

ξ1,2 = α

2
±

√
α2

4
+ α. (34)
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Taking into account the initial conditions, we find the solution of equation (21) in the form

K(r) = α

4(1 − α)
√

α2 + 4α

(
ξ r−1

1 (1 − ξ2) − ξ r−1
2 (1 − ξ1)

)
. (35)

This expression can be simplified at small and large values of parameter α. For α � 1, one
obtains

K(r) = 1
4α[r/2]+1 (36)

with square brackets standing for the integer part. The correlation function in the sequential
odd and even points is equal to each other. In accordance with equation (29), K(r) decreases at
r → ∞ in proportion to αs . In the opposite limiting case of the strong persistency, α → 1/2,
we have two different roots:

ξ1 = 1 − 4
3φ, ξ2 = − 1

2 + 1
3φ, (37)

with φ = 1/2 − α. The coefficient corresponding to the second root is much less than that
corresponding to the first one. Besides, the second term in equation (35) decreases more
rapidly. Therefore, the approximate solution in this case is

K(r) = 1
4 exp(−4φ(r − 1)/3). (38)

3.3.2. Correlation function at small α. Let us return to the case of an arbitrary value of N.
If α is very small, i.e. at

1

N
ln

1

α
� 1, (39)

Equation (32) has N roots with small absolute magnitudes:

ξk = α1/N

(
cos

(
2π

k

N

)
+ i sin

(
2π

k

N

))
, k = 0, . . . , N − 1. (40)

The correlation function, being a linear combination of the power functions with these roots
as their exponents, decreases proportionally to αs , which agrees with equation (29).

The coefficients ai in the linear combination in equation (30) can be found in the general
case, without any restrictions imposed on the value of α. The solution of equation (21) written
for 1 � r � N − 1 along with K(0) = 1/4 can be expressed by means of the Vandermond
determinants:

K(r) = K0(αN − 1)

N∑
k=1

ξ r−1
k∏N+1

j=1,j �=k(ξk − ξj )
, (41)

with ξN+1 = 1.

3.3.3. Correlation function at not too small α. In the case (33) of not too small α, the
absolute magnitudes of all roots are close to unity. It is convenient to rewrite equation (32),
introducing two new real variables γ and ϕ instead of complex x according to

x =
(

1 − 1

γN

)
eiϕ. (42)

Equation (32) takes the form

α
(
e

1
γ
−iNϕ − 1

) =
(

1 − 1

γN

)
eiϕ − 1. (43)



Memory functions and correlations in additive binary Markov chains 14299

.

.

.

.

.
. . . .

Figure 4. The roots of the characteristic polynomial equation close to the point ξ = 1 for N =
4000, α = 2 × 10−4. The solid line is Re ξ = 1.

Figure 5. Variance D(L) for the Markov chain with N = 100, α = 0.008 calculated by means of
exact equations (41), (5) (solid line) and solely using one root of equation (32) (dashed line). The
thin solid line describes the non-correlated Brownian diffusion, D(L) = L/4.

For the real root, equation (32) yields

αNγ (e1/γ − 1) = 1. (44)

This expression along with equation (31) determines the asymptotical behaviour of the
correlation function. It was first obtained in [19]. The qualitative approach allowed the authors
of [19] to obtain the correct expression for the exponential rate coefficient γ . But an incorrect
assumption about the quasi-continuity of the correlation function on the border between the
zeroth and first bands was made. It produced a wrong multiplier before exp(−γ r). Besides,
this approach yielded the incorrect behaviour of the correlation function on the first bands.

Equation (43) gives all remaining complex roots with the values of ϕ, which are quite
uniformly distributed over the circle [0, 2π ] and

1

γ
∼ ln

1

α
. (45)

The roots of equation (32) located in the vicinity of point ξ = 1 are shown in figure 4. The
single real root is much closer to the line Re ξ = 1 than the other ones. Besides, the coefficients
ai in equation (41) (see also equation (30)) for all terms containing the complex exponents
are much less than those for the term with the real exponent. Therefore, the behaviour of the
correlation function K(r) is generally determined by the term with the real exponent.
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The exact correlation function K(r) resulting from the numerical simulation of
equation (41) and its approximation determined by the contribution of the real root alone
are shown in figure 2. These curves are compared with the curves presented in [19] by a
qualitative method.

The correlation function thus obtained can be used to calculate one of the most important
characteristics of the random binary sequences, the variance of the number of unities in the
L-word. The results of the numerical simulations are shown in figure 5. One can see a good
agreement of curves plotted using both of these methods.

4. Conclusion

In summary, we have demonstrated the efficiency of describing the symbolic sequences with
long-range correlations in terms of the many-step Markov chains with the additive memory
function. Actually, the memory function appears to be a suitable informative ‘visiting card’
of any symbolic stochastic process. Various methods for finding the memory function via
the correlation function of the system are proposed. Our preliminary consideration suggests
that it is possible to generalize our concept of the Markov chains to a larger class of random
processes where a random variable can take on an arbitrary, finite or infinite number of values.

The proposed approach can be used to analyse different correlated systems in the diverse
fields of science. For example, the application of the Markov sequences to the theory of spin
chains with long-range interaction enables one to estimate some thermodynamic characteristics
of these non-extensive systems.
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